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ABSTRACT

The research described includes techniques for economizing

the time to evaluate Bayes' formula using a general-purpose

computer, time to compute Bayes' formula using special hard-

ware, relationships between game theory and Bayesian tech-

niques, and a suggested precise measure of the amount of

information in data about searched-for objects.
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I. INTRODUCTION

A. PREFACE

This paper develops four topics related to prediction

in ASW. They are collected together here because the topics

are commonly related to game theory and Bayesian techniques.

Parts of this paper use the terminology and results

presented in a previous paper, Contingency Trees, Contingency

Plans, and Utility Functions.

Chapters II and III of this paper describe some results

of the search for ways to evaluate Bayes' formula which are

economical of compute time. Chapter IV explores some of the

relationships and mutual benefits of game theory and Bayesian

techniques. The appropriateness and problems of applying

general-sum game analysis is discussed. The final chapter,

Chapter V, proposes a precise measure of the amount of infor-

mation in data about the location of objects being searched

for. This measure has potential as an objective measure of

the efficiency of predictive mechanisms.
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. ...- ....... . . .

B. BAYES' THEOREM

The terminology and nomenclature of Bayes' theorem (or

formula) are set down below for reference from the later

text. Bayes' theorem in the form used here states:

P[DIH i ] P[ i

P[HiD] = n 
()

ZP[DIH j ] P[H.]

j=l

where {Hii = l,...,n} is a set of n mutually disjoint hypo-

theses which exhaust the possibility

space.

D is an observed event or eatum.

P[H i] is the prior or a priori probability

of the ith hypothesis, i.e., before

the observation of D.

P(HiID] is the posterior or a posteriori

probability of the ith hypothesis,

i.e., after the observation of D.

P[DIH i ] is the probability of event D, given

the hypothesis H.

2



II. ECONOMIZING APPROXIMATIONS FOR BAYESIAN PROCESSORS

A. GENERAL COMMENTS

A serious drawback to the application of Bayesian tech-

niques to certain classes of situations is the large amount

of computation needed to evaluate Bayes' formula if the num-

ber of hypotheses is large. This chapter presents an

approximation technique for the evaluation of Bayes' formula

which reduces the computational load for these situations

and wnich permits any desired closeness of approximation

for a single application of Bayes' formula. Behavior of the

error over more than one application of Bayes' formula is

yet to be studied.

3



B. THE SEARCH FOR n MOVING OBJECTS

A particular situation of interest is using a Bayesian

processor in a search for n moving objects in a two-dimensional

surface. Under movement assumptions like those in [Luster,

et al, 1968], the number of hypotheses H that a Bayesian

processor must consider increases exponentially with n and

likewise increases exponentially with the distance' through

which a given object is allowed to move. Therefore if n

and/or the distance (more precisely, the number of track

segments) is at all large, the number of hypotheses to be

considered in a straightforward application of Bayes' Theorem

rapidly becomes huge, and the calculations for evaluating

their posterior probabilities are too voluminous to be feasible.

I

'More precisely, with the number of track segments
representing the objects' movements; the larger the number
of segments, the greater the detail in which the movement
is studied.

4



C. THE APPROXIMATION

A solution to this problem is had by restricting the

a priori prcbabilities P[H] and the conditional probabilities

P[DIH] to a relatively small number of values. Upper and

lower bounds on these quantities are chosen from among the

selected values, and the corresponding upper and lower bounds

on the posterior probabilities P[HID] are calculated. The

saving in computation time comes about because all computa-

tions fall into one of several distinct categories. The

categories are defined by the selected values included in the

calculations; because these values are restricted at the

outset, only a few such categories result. Thus only one

calculation need be carried out for each category; subsequent

cases which fall into that category will already have had

their result calculated,- which can be simply added into the

appropriate tally.

This procedure may be used iteratively so as to "zero

in" on the correct values of the hypotheses that preliminary

-.nalysis shows to be of greatest interest. Note that one is

dealing with upper and lower bounds throughout, so that the

true value of P[HID] is known to lie between the two bounds,

and so that the difference between the two bounds gives an

upper bound on the error.2 If this error is too large, the

process can be repeated, choosing closer bounds at the out-

set. Note that the selected values need not be selected at

equal intervals in the zero to one range.

2 1f the midpoint between the upper and lower bounds is

used to estimate P[DIH], the maximum error is at most half
this difference in absolute value.

5
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.'III. TIME TO COMPUTE BAYES' FORMULA USING HARDWARE
N I I:zi

N I

I ,!

A. GENERAL COMMENTS

Special computing hardware has.been suggested as 'a way

tb evaluate Bayes' fbrm;la,,obviating the problems of extens-

ire calculations required ii certain Bayesian processors as

discussed in the previous chapter.' Research has beei conducted

in an attempt to derive a loper bound on the time requirea

by 'a calculating device to perform such an evaluation of

.Bayes'| formula. This research has been successful :and its

results summajrized in this chapter.
* I *1 .

These results apply: to 'a sin 'le application of Bayes'

theorem. Providing certain coiditions of independence:are

, met, iterative~applications are pprmissible and are additive

' in terms of time to compute. Research has not been carried

* ' out fol time to compute in the case of sequential application:

of Bayes' theorem for the non-independent case, bat it

appears to prbsent no insurmountable, problems.

6
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B, SUMMARY OF THE RESULTS

Suppose that the possible values of P[DIH i] can be

adequately approximated by choosing from among the finite

set {p p Then in any given finite number of
iserations of Bayes' theorem, the possible values of P[HiD]

will likewise be finite, though perhaps large. They may,

however, themselves be approximated by some, perhaps smaller,

set of values, among which the observed data D cause changes

to take place. As in (Luster, 1970] the possible changes

may be represented as due to the action of a group opera-

tion. The time required to compute Bayes' theorem may

therefore be estimated by an estimate of the time required

to carry out the cormesponding group operation.

Suppose that the possible values of P[HijD] are approxi-

mated by some set of N values. Then there will be a maximum

of Nm combinations of values that the {P[HiID]}i=1 can

tassume at any one time; the exponent of N is "m-l" instead

of "m" because the posterior probabilities must sum to 1.

Then the group G mentioned in the last paragraph may be

'taken.to h&ve Nm-1 elements.

-Applying [Winograd, 1965, Section III, Theorem 1], the

',time required to compute an operation in a group G is at

least F logr 2Flogd  (G)] I time units. Here "I" denotes

the smallest integer not less than x. The function c(G) is

the.order of the largest subgroup H of G having the property:

either .H {the identity element} or else there exists a

*nonidentity element aeH such that every proper subgroup of

H contains a. The d and r are parameters representing hard-

ware characteristics and are defined in [Winograd, 19651.

7



C. AN EXA4PLE

Suppose that the possible values of P[HiJD] are approxi-
mated by the ten values { 3 4 2 3 4 9 19 it

20 10 5 4 3 3 4 5 10 20

is assumed, as in [Luster, 1970], that suitable "overflow"

and "underflow" indicators are available to sense the pene-

tration of an "upper threshold" above 12 orof a "lower
20

threshold" below 1 , at no extra expense in computing time.
20

Suppose that 10,000 hypotheses Hi are of interest (corres-

ponding, say, to a 100 x 100 array of cells in which it is

desired to locate given objects). The order of the group G

corresponding to this situation is 10 9999 . Assuming G has

been defined so as to be commutative, c(G) is at most 59999.

For d = r = 2, the lower bound is:

Flog r 
2 [logd a(G)11 1 + log2 r1og2 59 =

(2)
16 time units.

This time value can be compared to the value obtained

for the case where the posterior probabilities are allowed

two values and the number of hypotheses are two. In this

case, the time to compute Bayes' formula > two time units.

Using currently available integrated circuits, the time to

compute this latter case will be on the order of 100 nano-

seconds. This implies a lower bound of less than a micro-

second for the former case involving 10,000 hypotheses.

While these are lower bounds, [Winograd, 1965] indicates

that actual circuit times approach these bounds as the

complexity of the logic components used in the circuits

increases. For the bounds computed above, the simplest logic

components were used; it was assumed each component has two

input lines and one output line, and each line can be in at

most two possible states.

8



Time required to encode the observed data and to retrieve

and store the probabilities has not been included. However,

the times to perform these two operations are additive to

the time to compute developed above.

These results suggest the possibility of tremendous

saving in computation time for a Bayesian processor by use

of hardware components. There is, though, need to investi-

gate the behavior of the relationship of amount of hardware

to the numbers of hypotheses, distinguishable observed data,

selected numeric representations of probabilities, and the

time to encode the observed data and to retrieve and store

the probabilities. Once this relationship is understood,

it should be possible to determine trade-offs between time

to compute and hardware costs.

9



IV. RELATIONSHIPS AMONG GAME THEORY, BAYES' THEOREM,

CONTINGENCY PLANS, AND STRATEGY

A. GENERAL REMARKS

In the past there has been discussion of the relative

merits, redundancy, and uniqueness of Bayesian processors

and game theory. The following paragraphs present, first,

a discussion of the individual merits of game theory and the

meaning of strategy in terms of general sum games. It is

concluded that general sum games will be an important tool

of operations research in the future.

The language of contingency trees, contingency plans,

and their utilities is used. A previous paper in this series

develops this language.

Finally, by way of an example, a symbiotic relationship

between game theory and Bayesian techniques is presented.

It is concluded that such a combined approach has power to

handle a number of military decision-making situations.

The final example suggests a powerful way to use game

theory to support Bayesian processing. One of the difficul-

ties in applying Bayesian techniques has been the frequent

10



lack of a rationale for estimating a priori probabilities.

Game theory exhibits the potential for supplying that

rationale.

11



B. GAME THEORY AND STRATEGIES

The intersection of two complete contingency plans

determines a path in a contingency tree. In the language of

game theory, complete contingency plans correspond to (pure)

strategies, and paths correspond to states of the world

determined by the choice of a (pure) strategy by each player

in- a two-person game. It would be easy to modify the defini-

tion of a path so that a path would be determined by the

intersection of any given number n of complete contingency

plans, taken one each from each of n respective classes of

complete contingency plans. Then the game-theory corres-

pondence would be to an n-person game. But it is unnecessary

for present purposes to make this generalization. Thus, in

game-theory language it is a "player" who may choose a (pure)

strategy (= complete contingency plan) and there are as many

players as there are sets of (pure) strategies (= classes of

complete contingency plans) to be chosen from, one (pure)

strategy from each set of strategies. The utilities of the

various states of the world may, and generally do, differ

for each player. A two-person game is zero-sum if there is

some constant c such that for any given state of the world,

the utility of that state of the world for the first player

plus the utility of that state of the world for the second

player equals c.

A (not necessarily pure) strategy results in game theory

when a player elects to choose from among his available pure

strategies by using some chance device with known probebility

characteristics. That is, he elects to choose (pure) Strat-

egy 1 with probability p , (pure) Strategy 2 with probabil-2
ity p , etc., where p + P + "'" = 1. This election is

itself a strategy; it is equivalent to a pure strategy if

one of the pi's is 1, and is otherwise termed a "mixed

strategy."
12



A maximin strategy for a player in a two-person, zero-

sum game is one which maximizes his minimum expected utility,

where the minimum' is taken over all possible strategies of

the other player. As remarked in Section D below, if a

player in a two-person zero-sum game supposes that his oppon-

ent will play his opponent's maximin strategy and if the

player chooses his own strategy so as to maximize his own

expected utility on the basis of this supposition, then (if

the supposition is correct) the player will obtain an expected

utility equal to the expected utility for his own maximin

strategy. If, however, the player supposes that his oppon-

ent will play some other specified strategy, and if the

player chooses his own strategy so as to maximize his own

expected utility on the basis of this supposition, then (if

the supposition is correct, the player may obtain an expected

utility greater than the expected utility for his own maximin

strategy. If the supposition is wrong, he may do worse.

Section D suggests how the player can hedge: he can ensure

against unacceptable loss if his supposition is wrong by

accepting a lesser gain if his supposition is right.

The preceding paragraph shows a relationship between

estimated a priori probabilities of the opponent's choice

of pure strategies and the opponent's maximin strategy in

a two-person zero-sum game. The pliyer has some reason to

think the opponent will play the oppoi.-nt's maximin strategy.

The player's own maximin strategy will maximize the player's

expected utility given that the opponent plays the oppon-

ent's maximin strategy. Other strategies may likewise

maximize the player's expected utility given that the

1When the number of strategies available to each player
is finite, this minimum exists, as is easily shown.

13



opponent plays the opponent's maximin strategy; but, unlike

the player's maximin strategy, these other strategies may

result in loss to the player if the opponent departs from

the opponent's maximin strategy. Thus, although the player

has some reason to think that his opponent will choose pure

strategies as if with a priori probabilities determined by

the maximin strategy, maximizing the player's expected

utility under this supposition is not in itself sufficient

to ensure optimal (in the sense of maximin) play on the

player's part.

The situation becomes much more complex in the case

of possibly non-zero-sum, or general-sum, games. Here the

player can simply ignore his opponent's utilities and

choose his own maximin strategy. He may, however, be able

to do much better, depending on the arrangement and values

of the utilities and, perhaps, on such things as the avail-

ability of channels of communication, and his opponent's

willingness to cooperate.

A part of the problem of general-sum games is to define

what is meant by an optimal strategy in a given set of circum-

stances. Practical difficulties then typically arise in

trying to decide whether or not a given real-life sit z. ion

fits the circumstances for which a given strategy is, .-cord-

ing to the theory developed, optimal. Hence generaI-ium games

provide examples of situations where it is difficult to say

with what a priori probabilities a player should (normatively)

adopt each of his pure strategies, and where it is likewise

difficult to say with what a priori probabilities a player

will (empirically) adopt each of his pure strategies.

These difficulties notwithstanding, and perhaps in part

because the difficulties reflect problems that are an essential

14



part of the real world that general-sum games attempt to

model, the theory of general-sum games promises to play an

increasingly prominent role in operations research in the

decades ahead. As has just been noted, problems in assigning

a priori probabilities can reflect the problems of defining

an optimal strategy for general-sum games. Progress in the

latter field, both normative (how should players play) and

empirical (how do players play), should help in assigning

values or ranges of values of a priori probabilities in

game-like situations.

Warfare (in the broader sense which includes the

prevention of wars) is particularly rich in situations where

cooperation can be mutually beneficial and lack of coopera-

tion mutually disastrous.

The First World War is a haunting example. Through the

years of the war, the participating nations lost millions of

their young men. Following the war, short-sighted political

forces constructed a peace that destroyed the stability of

German government and which directed Europe into economic

collapse. Communist designs threatened or conquered nations

weakened politically and economically by the war. Two

personalities, Hitler and Mussolini, nourished Fascist

politics by founding their popular appeal on reaction to

Communist threat and economic disease.

Whether immediate effects or historical consequences

are assessed, there were no victors in this war. The
"players" lacked the ability to recognize or the mechanism

to effect a strategy which would have benefited all.

The post-war politics repeatedly failed to turn the

course of history away from the second war; in fact they

~15



appear in retrospect to have accelerated development of the

causative conditions. While they did recognize that some

interactions were non-zero sum games (for example, the game

whose selection of strategies is represented by the Munich

Agreement), they failed to recognize a broader non-zero sum

game. In The Gathering Storm Churchill identifies this

kind of suboptimization:

We shall see how the counsels of prudence and
restraint may become the prime agents of mortal
danger; how the middle course adopted from desires
for safety and quiet life may be found to lead
direct to the bull's-eye of disaster.

16



C. USE OF PARTIAL CONTINGENCY PLANS - AN EXAMPLE

Previous work' provides an example of a partial contin-

gency plan adequate to fulfill a prescribed mission--namely,

keeping the evader within a specified region of pursuer

relative space. For this example, the members of the

contingency tree -may be taken to be all possible events

of the form: the track (including both positions and time
at each position) of the evader inpursuer relative space

contains the initial track segment... [specification of initial

track segment, including both positions and time at each

position] .... Here the initial track position and starting

time is assumed to be given and fixed. tdis rooted at the

event A.: the track of the evader in pursuer relative space

contains the [degenerate] initial track segment... [consist-

ing of the evader's initial track position and starting

time] .... The partial contingency plan specifies what the

pursuer is to do whenever the evader reaches certain critical

points in pursuer relative space; it is not a complete con-

tingency plan (i.e., not a "strategy" in the usual game-

theory sense) because it does not say what the pursuer is to

do otherwise.

Let the utility of any path 9 in adbe 1 if the pursuer

never leaves the prescribed area, given 1, and 0 otherwise.

Then following the partial contingency plan assures that the

utility will be 1, regardless of the evadEr's strategy.

The notion of a partial contingency plan seems closer

to the niotion of "strategy" (as opposed to "tactic") in the

non-game-theory use of the term. "Strategy" usually connotes

'See [Dodson, Luster, and Randolph, 1970, Section 4.6].

17



a broad, overall plan, with d(tails still having to be filled

in later. Obviously such general approaches are invaiuable

in practical applications. Partial contingency plans may

therbfore find'a useful practical application at the overall

planning level for which complete contingency plans, owing

to their excessive concern for detail,, may be unsuited.

11
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D. GAME THEORY AND BAYESIAN TECHNIQUES - AN EXAMPLE

1. Introduction

Combined use of game theory and Bayesian techniques

enjpys a synergistic relationship when applied to certain

kinds of problems. This section presents an example of

their combined application to the problem of decision-

making under uncertainty. The problem is cast in a military

situation, that of a commander of battlefield units. While

the situation is simple, it is qualitatively similar to

many tacticallsituations faced by decision makers in all

three services.

2. The'Setting

A commander finds himself in the following tight situa-
tion. It is late evening. His men are tired and greatly
outnumbered. The country is mountainous, jungle covered,

and largely in control of the enemy. Reinforcements are due

in by helicopter the first thing in the morning. Meanwhile,

his men have only just had time to dig in for an expected

attack that night.

Because of the terrain, attack can come only from two

directions: straight ahead, or on the exposed right flank.

The enemy is known to have insufficient firepower to support

strong attacks from both directions simultaneously. But the

commander also has insufficient firepower to defend against

strong attacks frpm both directions; and the terrain offers

no positions for mounting the same guns so as to defend

against attacks from either direction.

19



3. Game Theory Analysis

The probability of being overrun that night depends on

where the enemy mounts a strong attack and where the defend-

ing commander concentrates his firepower. The commander's

estimate of this relationship is shown in Table 1.

Table 1. PROBABILITY OF BEING OVERRUN, GIVEN EACH
COMBINATION OF STRATEGIES

Commander Disposes Enemy's Main Attack is Against
Main Fire Power Front Right Flank
So As to Defend

Front .10 .70

Right Flank .50 .30

These probabilities are based solely on the commander's

judgment and experience. The effect of changes in these

probabilities could be determined, if desired, by applying

the methodology to be presented to the changed probabilities.

Applying elementary game theory to the estimates in

Table 1 yields optimal strategies of

P = .25 ql = .50

I P2 = .75 q2 = .50, (3)

where

P1  is the probability with which the commander

disposes his main firepower so as to defend

the front

20



is the probability with which the commander
disposes his main firepower so as to defend

the right flank

ql is the probability with which the enemy mounts

his main attack against the front

q 2 is the probability with which the enemy mounts

his main attack against the right flank.

To see what is meant here by "optimal" let

6 = p1 - .25 = .75 - P2

(4)

[= .50 = .50 -2

where

-.25 < 6 < .75

-.50 < c < .50.

It follows from Table 1 that the probability P of being over-

run may be expressed as a function of 6 and c as

P = .10(.25 + 6)(.50 + e) + .70(.25 + 6)(.50 - E)

(5)
+.50(.75 - 6)(.50 + e) + .30(.75 - 6)(.50 - E)

- .40 - .806c.

By choosing 6 = 0, the commander ensures that the

probability of being overrun will be neither greater than

21
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nor less than .40. Similarly for the enemy choosing e = 0.

Other choices of 6 and e lead to a change in the probability

of being overrun: the probability becomes less if 6 and e

are both positive or both negative, and greater otherwise.

Choosing 6 = 0 is the only way that the commander can be

certain that the probability of being overrun is not greater

than .40. This is the sense in which 6 = 0 in his optimal

strategy.

4. Use of Bayesian Analysis

Table 1 of the preceding section summarized the com-

mander's view of the situation, based on his own judgment

and experience. There is no guarantee that the enemy's sum-

mary of the situation would look like Table 1 or, if it

did, that he would apply game theory in deciding on a course

of action. These considerations suggest that if the enemy's

actual strategy amounted to choosing c = 0, it would be

something of a coincidence--even crediting the enemy with

a knowledge of game theory. Hence if the commander can be

[i satisfied that the enemy is more, or less, than fifty per

cent likely to attack the front, he may choose some 6 0

in an attempt to decrease the probability of being overrun

from his estimated .40.

Suppose that the commander receives intelligence reports

which make it appear very likely that the enemy will mount

its main attack in the front and that the enemy's firepower

will be concentrated so as to support a frontal attack. The

commander estimates that the probability of receiving these

reports is .80 if the enemy really is going to mount a frontal

attack. If the enemy is going to attack the right flank he

estimates the probability of receiving these same reports

is .10.

22



The intelligence reports clearly are relevant to the

commander's decision as to where to locate his own firepower.

But just how should he use the intelligence reports?

Let ql and q be the commander's estimates, before

receiving the intelligence reports, of the probability that

the enemy will mount its main attack on the front or on the

right flank, respectively. Given ql and q2 Bayes' theorem

provides a way of obtaining revised probabilities ql, and q2'

of these events by taking the intelligence reports into

consideration. Applied to the present situation Bayes'

theorem states:

P(Rlilq i

qi= (Ri2)q for i = 1,2 (6)
SP(Rj[l)q 1 + P (Rj2q

where P(RII) is the probability of the commander receiving

the intelligence reports given that the enemy is going to

mount a main frontal attack and P(R12) is the probability

of receiving the intelligence reports given that the enemy

is going to mount a flank attack.

The commander might take the values of q and q2 cal-

culated in the preceding section as his estimate of their

actual value. Then, applying Bayes' theorem:

(.80)(.50) 89
= (.80)(.50) + (.10)(.50)

(7)
(.10) (.50) = .

2'= (.80) (.50) + (.10) (.50) .

In the notation of the preceding section, the values

of ql' and q2' correspond to a value of

= .39 > 0. (8)
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Accordingly any value of 6 satisfying

0 < 6 < .75 (9)

will decrease the probability P of the commander's troops

being overrun, with the decrease becoming more pronounced

as 6 is increased. The lowest value of P thus corresponds

to. 6 = .75 (i.e. P1 = 1 and P2  0); it is

P = .40 - .806c = .40 - .80(.39)(.75) = .17. (10)

The validity of this sizable reduction in P depends

on both the.initial estimates of ql and q2 and the analysis

involving the estimated accuracy of the intelligence reports.

Had the enemy somehow been able to give the appearance of

attacking from the front, whereas in reality he was planning

to attack on the right flank, the value of P would change

from .40 to .70 in the event that p1 = 1. This would be

the cost of being deceived by the enemy. This possibility

has already been taken care of in the commander's estimate

that P(R12) = .10. Nevertheless the commander may want to

hedge further against the possibility of being caught with

his main firepower defending the front when the main attack

is on the right flank. At the same time he may want to

take some advantage of the intelligence reports so as to

reduce P.

One way of hedging further would be to set an upper

bound (say .50) on the "worst case" probability of being

overrun. The Bayes' theorem estimate of e = .39 could then

be used to choose 6 so as to minimize P subject to the

constraint that P is not to exceed .50 for this 6 and for

any e between -.50 and .50.

24



Some positive value of 6 will fulfill these conditions.

Given a positive 6, the worst (from the commander's point of

view) possible value of e is the negative one largest in

magnitude--viz., e = -.50, corresponding to ql = 0 and ql = 1.

For this worst case

P = .40 - .806(-.50) = .50,

so that 6 = .25, corresponding to p1 = .50 = p2. Using this

strategy the commander will have probability

p = .40 - .806c = .40 - (.80) (.25) (.39) = .33 (11)

of being overrun if the analysis regarding the intelligence

reports is correct. Moreover the probability of being over-

run will not exceed .50 even if the analysis regarding the

intelligence reports is wrong and even if the enemy adopts

an optimal strategy.

5. Final Comments

The foregoing discussion gives an example of the

synergistic use of game theory and of Bayes' theorem in a

problem which, though simplified, contains a number of

realistic elements. The discussion shows how a battlefield

commander might make a decision urder uncertainty and how he

might use additional intelligence which becomes available to

him about the enemy's actions.

The example also shows the essential difference between

the game theory and Bayesian techniques. Game theory is

used to decide what to do based on the information available;

Bayesian techniques are used to process the available data,

producing thereby the information input to the decision-
making procedure.
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Finally, the example shows game theory as a useful

adjunct to Bayesian processors as a technique for estimat-

ing a priori probabilities.
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V. A MEASURE OF INFORMATION FOR SEARCH THEORY

A. GENERAL COMMENTS

Theoretical and practical research of ASW predictive

mechanisms and more general search problems need a measure

of the value of data about the objects searched for. This

value, termed here the "amount of information" contained in

the data, is useful in measuring (1) the relative performance

of several competitive predictive mechanisms, (2) the effi-

ciency of procedures which produce . priori probabilities,

and (3) the value of the contribution or potential contribu-

tion of sensors and tactics to a search effort, as examples.
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B. THE MEASURE

The measure of information is essentially the expected

time to find the first of the objects being sought. The

following text assumes this definition, although related

definitions, e.g., expected time to find all objects sought,

can be considered analogously. This measure is of interest,

no.t only because of its obviously close relation to real-

world operations, but also because it may be simply and

directly related to objective functions or constraints on

the basis of which decisions must be made.

By way.of specific context assume that n objects are

distributed among a given set of cells, and that the prob-

ability of an object being in each cell is known. Then the

measure of information of this data (i.e., the probabilities)

is the expected time to find the first of these objects

given the probabilities are known.

Clearly the type of search to be conducted plays an

important role here. To be widely applicable, the methods

of search available must be somewhat idealized; to remain

useful, they must be appropriately idealized, and the

idealization must remain within reasonable bounds. In

some circumstances the idealization can be carried out in

such a way that the expected search time is closely related

to Shannon's familiar measure H of information or uncertainty.

In the applications of interest in the present paper a dif-

ferent idealization seems appropriate.

Suppose that there are just m given cells and that the

a priori probability of there being at least one object in

cell j is pj, for js{l,...,m}. Given that there is at
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least one object in some specified cell, suppose that the

probability of having failed -'o find any object in that
rt

cell after searching for t time units is q , where r is

the proportion of the available search force used for

searching the specified cell and q is a constant (O<q:l)

characterizing the capability of the search force and the

difficulty of the search. Relabeling if necessary, let

pl pP2?...pm. For standardization, let q = e
- 1. Then it

can be shown that, using an optimal search strategy, the

expected search time required to find the first object is

j-1

m 1Pk
Z[2j - 1 + ln k---pj. (12)

j=l p
ip.

Because of the standardization, the expected search

time is independent of q. To obtain from (12) the expected

search time for some q e- , simply divide (12) by ln q.

This measure can be generalized without difficulty to

the case where there are two distributions: the actual

distribution of the objects in the cells, and the distribu--

tion which determines the search strategy (called the "known

distribution").

With this generalized measure the information content

of distributions generated by a priori probability generators,

for example, can be evaluated for efficiency. The actual

distribution is, for analytical purposes, given, and the

known distribution is the output of the generator.

Predictive mechanisms can be compared by using the
generalized measure to compute the marginal increase in the

amount of information contributed by the predictive process.

29
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This margin is the difference between the amount of infor-

* mation in the pqsterior probabilities and the amount of

information in the a priori probabilities, 6iven the actual

distribution and the observed data. This margin is, in other

words, the efficiency of the predictive mechanism.,

In the comparision of predictive mechanisms, the independ-

ent variable is the type of mechanism. If, instead, the,

mechanism is held constant and the observed data allowed to

vary, the computed margin is the "value" of the observed data.

Thus used, the methodology can be applied to measuring in a

precise way the contribution of various sensors, or'competi-

tive tactics in ASW situations.

'3
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